永磁电机是低速大转矩直驱传动系统的理想选择,异步感应电机在低速大转矩直驱系统中应用较少。如何提高转矩密度,进一步减小体积,是促进低速大转矩直驱电机推广应用的关键。
分数槽绕组(即电机的每极每相槽数q=b+c/d,b是整数,c/d是最简分数)广泛应用于永磁电机,能够有效削弱永磁电机固有的齿槽转矩。分数槽绕组分为假分数槽(q>1)和真分数槽(q<1)两类,真分数槽绕组的绕组节距y1=1,每套线圈集中绕制在一个定子齿上,又称为真分数槽集中绕组。
当电机的极数较多时,采用真分数槽集中绕组可以显著减少定子槽数,使结构简化,有效解决了低速大转矩永磁直驱电机极数、槽数较多的难点。真分数槽集中绕组还具有便于自动嵌线,绕组端部短、定子铜耗降低等优点。
真分数槽集中绕组永磁同步电机由于高转矩密度、高效率和低转矩脉动等优点,在风力发电系统中得到了广泛的关注和应用。为控制质量和成本,同时兼顾电机性能,文献[15]中曲荣海教授以采用真分数槽集中绕组的7MW大型直驱风力发电机为对象,对表贴式和内置式两种转子磁路结构的优劣进行研究。两台电机的转速都是7r/min,按质量和成本最低作最优设计并进行性能对比。
结果表明两台电机性能良好,转矩密度均大于108kN·m/m3。采用表贴式结构,电机的总质量和成本更低,转矩脉动更小,抗退磁性能更好;内置式结构的优势在于更高的转矩密度和低磁损耗。
在上述研究的基础上,Kazi Ahsanullah采用转速为143r/min的内置式永磁同步电机,对集中式绕组和分布式绕组进行对比研究。研究表明,相比分布式绕组,集中式绕组使电机的齿槽转矩、定子铜耗显著降低,转矩密度提高;但是凸极率降低使磁阻转矩减小和弱磁调速能力减弱,具体见表1。
文献[16]还以齿槽转矩和效率为设计目标,提出一种永磁直驱风力发电机的优化设计方法,通过样机试制验证了方法可行性。
表1 分布式绕组电机与集中式绕组电机相关性能对比
磁齿轮永磁复合电机是指将传统永磁无刷直流电机或永磁同步电机和磁性齿轮相结合的一类直驱电机。在磁齿轮结构的基础上,近年来国内外学者提出很多新型拓扑结构的永磁游标电机。磁齿轮永磁复合电机和永磁游标电机的运行原理都是基于“磁场调制效应”:由转子永磁体激励的多极对数旋转磁场在调制环(或调制齿)的作用下,转换成定子中的少极对数旋转磁场,有效谐波磁场用于机电能量转换和转矩传递。
利用磁场“自增速”效果,定子绕组可按电机高速谐波磁场的极对数进行设计,使得电机的结构简化,定子槽数大大减少,绕组绕制简便,整机体积和质量降低,转矩密度得到较大提升。
文献[22]中浙江大学王利利博士提出如图1所示的磁齿轮永磁无刷直驱电机,结构上可看作一台外转子永磁无刷电机与磁齿轮的结合。电机定子绕组按4对极设计,采用三相工频电源供电时,同步旋转磁场的转速为750r/min,保持调磁环固定,在磁场调制作用下,转子转速为130r/min,且旋转方向与磁场方向相反。采用变频器供电时,该电机表现出良好的调速性能。
图1 磁齿轮永磁无刷直驱电机
磁齿轮永磁复合电机通常包含多层气隙,由两个旋转部分和1~2个固定部分组成,机械结构复杂。在磁齿轮结构的基础上,永磁游标电机的研究发展得很快。
Byungtaek Kim教授对永磁游标电机的工作原理和设计方法进行研究,推导了反电动势和功率的表达式,在此基础上计算电机的最大功率密度,进而确定转矩与气隙容积的对应关系,得出的游标电机的功率密度随气隙长度的增加而增大。此外,根据所推导表达式给出一种选取极槽配合的新方法,可以进一步提高功率密度。
文献[24]中提出一种采用集中绕组的表贴式永磁游标电机,拓扑结构如图2所示。
图2 真分数槽永磁游标电机
曲荣海教授提出一种高转矩密度多谐波永磁游标电机,采用叠绕组,结合特殊设计的定子辅助齿,具有多个不同磁通密度的工作谐波。使调磁块的间距不等于平均槽距,可以引入附加工作谐波,该电机比常规非叠绕组永磁游标电机的转矩密度提高20%以上。
相比于传统的永磁同步低速大转矩永磁直驱电机体积较大的特点,永磁盘式电机整机构造更加紧凑,有利于转矩密度的提高。永磁盘式电机有时也被称为轴向磁通电机,采用可调节平面式气隙,气隙磁场呈轴向式,轴向尺寸短,电机外径大,比转矩高。
其结构特点使电机易设计成多极对数,符合低速大转矩直驱电机的应用需求,且电机轴向尺寸短,适用于轴向安装尺寸受限制的场合。Andrea Cavagnino对轴向磁通永磁电机和径向磁通永磁电机进行系统对比研究,得出当电机极数较多(10极以上)且电机主要尺寸比小(◆<0.3)时,轴向磁通永磁电机的转矩密度更高。
卢琴芬教授提出一种适用于游梁式抽油机的永磁盘式电机,转速为15r/min。用两台背靠背对称安装的盘式电机替代原有三相异步感应电动机和减速机构,电机直接驱动抽油杆。利用三维有限元仿真分析气隙磁场,计算电机转矩和轴向吸力,并试制样机进行试验验证。结果表明抽油机系统运行平稳,振动噪声小,整体效率高,满足实际应用要求。
横向磁通电机磁场呈三维空间分布,电路和磁路自然解耦,有效克服绕组截面积与定子齿部截面积相互制约的缺点,可以增加极对数实现电机低速运行。在一定范围内增加极对数,横向磁通电机的转矩密度随之提升。
传统的爪极横向磁通电机如图3所示,在较低的转速下,转矩密度优于普通的异步感应电机和无刷直流伺服电机。横向磁通电机各相独立,绕组结构简单,便于下线,且不存在传统电机的端部绕组。
图3 爪极横向磁通电机
在传统爪极横向磁通电机基础上,文献[31]中提出一种外转子横向磁通轮毂电机,采用新型爪极结构,并且设计环形磁铁便于放置在转子铁心,新结构大大减少了永磁体用量。样机试验的结果表明,电机在100r/min的转速下满载运行平稳可靠,适用于轻型电动汽车的直接驱动。
双定子/双转子电机是指电机有两个定子或转子,以及两个气隙,分为同心式结构和并行式结构两类。严格意义上,双定子/双转子电机不是与永磁游标电机、永磁盘式电机、横向磁通电机等并列的电机分类,而是一种电机结构。
文献[22,32]中的磁齿轮永磁复合电机,文献[33]中的永磁盘式电机、文献[34]中的横向磁通电机都是双定子/双转子结构。磁齿轮永磁复合电机的特殊工作原理决定其必然存在两个转子。曲荣海教授较早开展了相关研究,指出多气隙电机比传统的单气隙电机具有更高的转矩密度。文献[33-34]采用双定子/双转子结构的永磁盘式电机和横向磁通电机,气隙磁通密度和转矩密度都有提高。
双定子/双转子结构的永磁无刷电机和永磁同步电机,凭借良好的调速性能最早用作汽车、摩托车的驱动电机。通过改变两套绕组的联结方式,使得电机在更宽的工作范围内保持良好运行特性。永磁同步电机或永磁无刷直流电机用于低速大转矩直驱系统时,电机内径较大,冲片利用率偏低,限制了转矩密度的提升。低转速时,采用双定子/双转子结构能够有效提高电机内部空间利用率,使电机具有更高转矩密度,同时提高了效率和最大输出功率。
(摘编自《电工技术学报》,原文标题为“低速大转矩永磁直驱电机研究综述与展望”,作者为鲍晓华、刘佶炜等。)低速大转矩永磁直驱电机研究综述与展望