随着功率半导体技术的发展和直流分布式电源、储能以及直流负荷日益增多,直流输配电技术已经成为当前的研究热点。直流固态变压器(Direct Current Solid State Transformer, DCSST)作为在不同电压等级直流电网间实现电压和功率灵活控制与管理的关键设备,也成为众多学者关注的对象。
鉴于移相式-双有源桥(Phase Shift-Dual Active Bridge, PS-DAB)变换器和串联谐振式-双有源桥(Series Resonance-Dual Active Bridge, SR-DAB)变换器具有控制灵活和变换效率高的优点,本文作者在相关文献中提出一种基于PS-DAB和SR- DAB模块采用输入串联输出并联(Input Series Output Parallel, ISOP)结构组合的混合模块化直流固态变压器(Hybrid Modular Direct Current Solid State Transformer, HMDCSST)。
其中SR-DAB模块采用开环控制工作于谐振状态,而PS-DAB模块采用闭环控制实现HMDCSST的电压或功率调节功能。由于采用模块组合,通过设置合适的SR-DAB和PS-DAB模块数比例,则可实现HMDCSST在保证高效率变换的同时具备灵活可控的能力。此外,由于SR-DAB采用开环控制,可显著减小系统控制复杂度以及通信端口的数量。
建立HMDCSST的小信号模型是深入研究其动态特性,进行快速响应控制的前提。
本文在上述研究工作的基础上,建立PS-DAB与SR-DAB平均值模型,并分别推导出PS-DAB与SR-DAB小信号模型,进而得到HMDCSST的小信号模型。
改善DCSST的动态响应有利于提高直流系统复杂工况下的供电质量和运行稳定性,部分学者对此展开了深入研究。在描述DC-DC变换器小信号模型中,当输入电压-输出电压的传递函数A(s)为零时,可使得输入电压的扰动对输出电压的影响几乎为零,部分文献通过输入电压前馈法来使A(s)接近于零。
本文首先建立HMDCSST的小信号模型,并通过仿真证明其准确性。基于HMDCSST的小信号模型,提出一种快速响应控制策略,即在传统输出电压PI控制的基础上,利用输入电压前馈控制策略减小输入电压扰动对输出电压的影响,并采用负载功率预测控制策略抑制负载功率扰动对输出电压的影响。通过仿真对比分析了所提控制策略的稳定性,最后通过实验结果验证了HMDCSST快速响应控制策略的有效性。
图10 HMDCSST实验平台
本文建立了HMDCSST的小信号模型,并通过仿真证明小信号模型的准确性。提出一种综合输入电压前馈与负载功率预测的快速响应控制策略,并分析了控制系统的稳定性与响应快速性。最后通过搭建两模块小功率实验平台,将本文提出的快速响应控制策略与传统PI控制策略进行比较,得出以下结论: